If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 15x2 + 10x + 551 = 0 Reorder the terms: 551 + 10x + 15x2 = 0 Solving 551 + 10x + 15x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 15 the coefficient of the squared term: Divide each side by '15'. 36.73333333 + 0.6666666667x + x2 = 0 Move the constant term to the right: Add '-36.73333333' to each side of the equation. 36.73333333 + 0.6666666667x + -36.73333333 + x2 = 0 + -36.73333333 Reorder the terms: 36.73333333 + -36.73333333 + 0.6666666667x + x2 = 0 + -36.73333333 Combine like terms: 36.73333333 + -36.73333333 = 0.00000000 0.00000000 + 0.6666666667x + x2 = 0 + -36.73333333 0.6666666667x + x2 = 0 + -36.73333333 Combine like terms: 0 + -36.73333333 = -36.73333333 0.6666666667x + x2 = -36.73333333 The x term is 0.6666666667x. Take half its coefficient (0.3333333334). Square it (0.1111111112) and add it to both sides. Add '0.1111111112' to each side of the equation. 0.6666666667x + 0.1111111112 + x2 = -36.73333333 + 0.1111111112 Reorder the terms: 0.1111111112 + 0.6666666667x + x2 = -36.73333333 + 0.1111111112 Combine like terms: -36.73333333 + 0.1111111112 = -36.6222222188 0.1111111112 + 0.6666666667x + x2 = -36.6222222188 Factor a perfect square on the left side: (x + 0.3333333334)(x + 0.3333333334) = -36.6222222188 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 2(3)+2y=3 | | 4x^2+156x+1=0 | | X=175+0.3x | | X-0.3x=175 | | 3a(a^2-a^4)-3a(a^5+a^2)-2a(a^2-2a)= | | 4+2x=5x+13 | | f(x)=x^3-x^2-x+3 | | 8x+6x-5=0 | | 1/85=4.2/d | | 6-2f=4 | | x^2+2x=0.21 | | 4(x)+12=60 | | -21=15+6d | | 0=3x^2-8x | | 2x+7=-6-12 | | 7n^4-7=0 | | 5x^2+5y^2+5z^2-2xy-2xz-2yz-70=0 | | 1-y=10+y | | 2x-7=-6-12 | | 5x-7=77 | | x-5=13y | | 10x+3(2x-4)=44 | | 21x-5(2x-7)=24 | | a=x+0.04*x | | f(x)=4x^2-40x+80 | | 675h+4636=754676 | | 4x+3y+.5z=100 | | 12cosx-5sinx=4 | | 18x-5x=416 | | 18x-32=108 | | 6*x^4+29*x^3-17*x^2-142*x+24=0 | | 4X+6=6X+54 |